Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vita E. Keblys, Frank R.
Fronczek, George R. Newkome, \ddagger
Steven F. Watkins* and Claus D. Weis§

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
\# Current address: Departments of Chemistry \& Polymer Science, The University of Akron, Goodyear Polymer Center, Akron, Ohio 44325-4717, USA
§ Current address: Bergmattenweg 81, CH-4148 Pfeffingen, Switzerland

Correspondence e-mail: swatkins@lsu.edu

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.042$
$w R$ factor $=0.127$
Data-to-parameter ratio $=55.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetramethyl 2,6-dioxoadamantane-1,3,5,7tetracarboxylate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{10}$, has crystallographically imposed $\overline{4}$ molecular symmetry. It is a dioxoadamantane with its two $\mathrm{C}=\mathrm{O}$ bonds lying along the twofold axis. It is symmetrically substituted with four methoxycarbonyl groups, and the ester groups form $\mathrm{CH}_{2}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ torsion angles of 26.21 (7) ${ }^{\circ}$ with the adamantane core.

Comment

Prior to our convenient three-step synthesis (Newkome et al., 1992) of adamantanetetracarboxylic acid, there was only one difficult and lengthy procedure reported (Landa \& Kamvcek, 1959), a modification of the original route (Stetter et al., 1956). A key component to understanding the multi-step procedure was the isolation of the title compound, (I).

(I)

The crystal structure of one other 2,6-dioxoadamantane has been reported (Ayres et al., 1994), but it is asymmetric. Ermer (1988) characterized adamantane-1,3,5,7-tetracarboxylic acid [Cambridge Structural Database (CSD, Version 5.27; Allen, 2002) refcode GEJVEW], and he and others have characterized several of its derivatives: CSD refcodes GIMSIE (Ermer \& Lindenberg, 1988), KENVUU (Ermer \& Lindenberg, 1990), UNIBIC (Fleischman et al., 2003), VOBDOF, VOBFOH and VOBFUN (Ermer \& Lindenberg, 1991). Four of these (GEJVEW, VOBFOH, VOBFUN AND KENVUU) display the same crystallographically imposed $\overline{4}$ molecular symmetry as the title compound.

Experimental

Meerwein's ester (tetramethyl 2,6-dioxobicyclo[1.3.3]nonane-1,3,5,7tetracarboxylate; Meerwein \& Schurmann, 1913) (10 g) was treated with $\mathrm{CH}_{2} \mathrm{Br}_{2}(16 \mathrm{ml})$ in the presence of sodium methoxide $(1.4 \mathrm{~g}$ sodium and 18 ml dry MeOH) in a sealed tube according to the
original procedure of Böttger (1937). Heating for 10 h at 403 K produced the colorless crystalline dione tetraester in 31% isolated yield. Recrystallization from 1:2 dioxane- MeOH produced crystals suitable for diffraction analysis (m.p. 559 K , literature m.p. 556.5557.5 K).

Crystal data

```
C}\mp@subsup{\textrm{C}}{18}{}\mp@subsup{\textrm{H}}{20}{}\mp@subsup{\textrm{O}}{10}{
Mr=396.34
Tetragonal, I4 / /a
a=12.7635 (8) A
c=10.8158 (6) \AA
V=1761.97(18) \AA}\mp@subsup{}{}{3
Z = 4
```


Data collection

```
Nonius KappaCCD diffractometer with an Oxford Cryosystems
Cryostream cooler
\(\omega\) scans with \(\kappa\) offsets
Absorption correction: none
```

$$
D_{x}=1.494 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=110 \mathrm{~K}$
Bicapped square prism, colorless
$0.43 \times 0.40 \times 0.40 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.127$
$S=1.06$
3672 reflections
66 parameters
H -atom parameters constrained

Figure 1
View of (I) (50% probability displacement ellipsoids) with the asymmetric unit labeled. Unlabeled atoms are related by the three symmetry codes given in Table 1.

ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Ayres, F. D., Khan, S. I., Chapman, O. L. \& Kaganove, S. N. (1994). Tetrahedron Lett. 35, 7151-7154.
Böttger, O. (1937). Chem. Ber. 70, 314-325.
Ermer, O. (1988). J. Am. Chem. Soc. 110, 3747-3754.
Ermer, O. \& Lindenberg, L. (1988). Helv. Chim. Acta, 71, 1084-1093.
Ermer, O. \& Lindenberg, L. (1990). Chem. Ber. 123, 1111-1118.
Ermer, O. \& Lindenberg, L. (1991). Helv. Chim. Acta, 74, 825-877.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. \& Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.
Landa, S. \& Kamvcek, Z. (1959). Collect. Czech. Chem. Commun. 24, 40044009.

Meerwein, H. \& Schurmann, W. (1913). Ann. Chem. 398, 196-242.
Newkome, G. R., Nayak, A., Behera, R. K., Moorefield, C. N. \& Baker, G. R. (1992). J. Org. Chem. 57, 358-362.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stetter, H., Bänder, O.-E. \& Neumann, W. (1956). Chem. Ber. 89, 1922-1926.

[^0]: © 2006 International Union of Crystallography All rights reserved

